Browsing by Author "Wadhwa, Ridhima"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A comparative study of chemically synthesized and Camellia sinensis leaf extract-mediated silver nanoparticles(3 Biotech, 2019) Kumar, Varun; Wadhwa, Ridhima; Kumar, Naresh; Maurya, Pawan KumarSilver nanoparticles (AgNPs) are amongst the most fascinating nanomaterials which have been extensively synthesized by chemical reduction and biological method using enzymes, microorganisms and plant extracts. In our study, an aqueous extract of green tea was used as a stabilizing and reducing agent for AgNPs synthesis. The synthesized AgNPs were characterized by dynamic light scattering, UV–visible (UV–Vis) spectroscopy and scanning electron microscopy. These AgNPs were evaluated for antimicrobial activity and photocatalytic dye degradation. The AgNPs showed antibacterial activity against E. coli, S. aureus and S. pyogenes with 6 mm, 5 mm and 8 mm zone of inhibition, respectively. Our work also focused on methylene blue degradation in aqueous solution using AgNPs as catalyst which shows 65% of dye degradation. An absorbance peak of 427–437 nm was observed using UV–Vis spectrophotometer. Our study proves that the AgNPs show potent antimicrobial activity against pathogenic bacteria. At room temperature, AgNPs possess rapid, effective and steady catalytic activity in cationic organic dye degradation. The high catalytic activity of AgNPs can be employed in industries and water purification. Our study confirmed that green-synthesized AgNPs are eco-friendly and non-toxic.Item Red blood cells as an efficient in vitro model for evaluating the efficacy of metallic nanoparticles(3 Biotech, 2019) Wadhwa, Ridhima; Aggarwal, Taru; Chandra, Pranjal; Yadav, Pooja; Maurya, Pawan Kumar; Kumari, Vandana; Reddy, Boda Sai CharanBlood and the linings of blood vessels may be regarded as a fifth tissue type. The human body contains 5 × 109 red blood cells (RBCs) per ml, a total of 2.5 × 1013 cells in the 5 l of blood present in the body. With an average lifetime of 125 days, human RBCs are destroyed by leukocytes in the spleen and liver. Nowadays red blood cells are extensively used to study various metabolic functions. Nanoparticles (NP) are being widely accepted for drug delivery system. This review summarizes the red blood cells, NPs and their characteristics on the basis of the RBC components along with drug delivery systems through RBCs. Further, we also discussed that how erythrocytes can be used as an efficient in vitro model for evaluating the efficacy of various nanocomposite materials.