Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Dubey, K"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Antimicrobial Activity against Antibiotic-resistant Pathogens and Antioxidant Activity and LCMS/MS Phytochemical Content Analysis of Selected Medicinal Plants
    (2024-02) Thakur, M; Khushboo; Yadav, A; Dubey, K; Dakal, K; Yadav, V
    Medicinal plants are a major source of numerous therapeutic agents, and the emergence of pathogenic bacteria has rekindled interest in traditional medicine systems as an alternative approach to overcoming resistance. The dried plant material of four medicinal plants, namely Terminalia arjuna (bark), Terminalia bellirica (fruit), Aegle marmelos (leaves), and Bacopa monnieri (leaves), was powdered, and aqueous extracts were prepared. The antimicrobial activity of the extracts was evaluated against three clinically important strains: Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli 385. As E. coli 385 was resistant to the broadest spectrum of antibiotics tested, it was classified as (MDR multi-drug resistant). E. coli, Bacillus subtilis, Mycobacterium smegmatis (MTTC), and Vibrio alginolyticus (ATCC) were also assessed using the agar well diffusion method for zones of inhibition and minimum inhibitory/bactericidal concentration (MIC/MBC). Clinically important strains were found to be sensitive to the aqueous extract of T. bellerica (19.51 ± 0.61 mm) with MICs ranging from 0.31 to 0.62 mg/ml. The MDR strain was also sensitive to Bellirica monnieri (16.10 ± 0.31 mm) aqueous extract. To determine the potential for a wide range of applications, the antioxidant activities of the extracts were evaluated using DPPH, ABTS, and FRAP assays. The T. arjuna plant extract exhibited the highest radical scavenging activity with the lowest EC50 values for DPPH (1.15 ± 0.061 mg/ml) and ABTS (1.02 ± 0.07 mg/ml). The plant extracts were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy, and LC-MS/MS.
  • Loading...
    Thumbnail Image
    Item
    Current scenario and challenges in recycling of human urine generated at source in rail coaches as resource
    (2023-07) Dubey, K; Rajput, D; Baldia, A; Kumar, A
    The current scenario of human urine being directly discharged into the environment without recycling, despite being an economical source of fertilizer. Train coaches are the major source of large-scale urine waste generation. Adopting a cir cular economy creates significant synergies toward usages of water generated after nutrient recovery from urine. Some advanced decentralized treatment systems, such as electro chemical, bioelectrical, or reverse osmosis, would be useful to treat and recover nutrients from urine waste/wastewater. The laborious and costly affair of removing nutrients like N, P, and K from human urine needed a sustainable solution. These recovered nutrients can be reused as fertilizers in irrigation and, indirectly, in large-scale biodiesel production by being used in microalgae cultivation. However, the potential of reusing human urine waste is yet to be explored commercially. Additionally, artificial intelligence may be explored with sus tainable approaches for urine separation and recycling soon.
  • Loading...
    Thumbnail Image
    Item
    Draft genome sequence of Streptomyces sp. KD18, isolated from industrial soil
    (2023-01) Khusbhoo; Singhvi, N; Dubey, K
    The present study scrutinizes the presence of Streptomyces strains in the soil sample collected from industrial area of Baha durgarh (Haryana) India. The morphological approach manifested the isolated strain belong to Streptomyces species and named as Streptomyces sp. KD18. Sequencing of Streptomyces sp. KD18 genome was performed by Illumina Nextseq500 platform. 65 contigs were generated via SPAdes v3.11.1 and harboured genome size of 7.2 Mb. AntiSMASH server revealed the presence of 25 biosynthetic gene clusters in KD18 genome where BGC of lipstatin was of more interest from industrial and pharmaceutical purpose. The draft genome sequence represented via ANI values claimed that the KD18 strain belongs to Streptomyces toxytricini and fnally named as S. toxytricini KD18. The LC–MS analysis of the extracted metabolite con frmed the production of lipstatin. The genome sequence data have been deposited to NCBI under the accession number of GCA_014748315.1.
  • Loading...
    Thumbnail Image
    Item
    Insights into the mechanism of mycelium transformation of Streptomyces toxytricini into pellet
    (2023-08) Kumar, P; Khushboo; Rajput, D; Dubey, K
    Formation of the mycelial pellet in submerged cultivation of Streptomycetes is unwanted in industrial fermentation processes as it imposes mass transfer limitations, changes in the rheology of a medium, and affects the production of secondary metabolites. Though detailed information is not available about the factors involved in regulating mycelial morphology, it is studied that culture conditions and the genetic information of strain play a crucial role. Moreover,the proteomic study has revealed the involvement of low molecular weight proteins such as; DivIVA, FilP, ParA, Scy, and SsgA proteins in apical growth and branching of hyphae, which results in the establishment of the mycelial network. The present study proposes the mechanism of pellet formation of Streptomyces toxytricini (NRRL B-5426) with the help of microscopic and proteomic analysis. The microscopic analysis revealed that growing hyphae contain a bud like structure behind the apical tip, which follows a certain organized path of growth and branching, which was further converted into the pellet when shake flask to the shake flask inoculation was performed. Proteomic analysis revealed the production of low molecular weight proteins ranging between 20 and 95 kDa, which are involved in apical growth and hyphae branching and can possibly participate in the regulation of pellet morphology.
  • Loading...
    Thumbnail Image
    Item
    Structural assessment of OsNIP2;1 highlighted critical residues defining solute specificity and functionality of NIP class aquaporins
    (2023-05) Sharma, Y; Thakral, V; Raturi, G; Dubey, K
    Introduction: Nodulin-26-like intrinsic proteins (NIPs) are integral membrane proteins belonging to the aquaporin family, that facilitate the transport of neutral solutes across the bilayer. The OsNIP2;1 a mem ber of NIP-III class of aquaporins is permeable to beneficial elements like silicon and hazardous arsenic. However, the atomistic cross-talk of these molecules traversing the OsNIP2;1 channel is not well under stood. Objective: Due to the lack of genomic variation but the availability of high confidence crystal structure, this study aims to highlight structural determinants of metalloid permeation through OsNIP2;1. Methods: The molecular simulations, combined with site-directed mutagenesis were used to probe the role of specific residues in the metalloid transport activity of OsNIP2;1. Results: We drew energetic landscape of OsNIP2;1, for silicic and arsenous acid transport. Potential Mean Force (PMF) construction illuminate three prominent energetic barriers for metalloid passage through the pore. One corresponds to the extracellular molecular entry in the channel, the second located on ar/R fil ter, and the third size constriction in the cytoplasmic half. Comparative PMF for silicic acid and arsenous acid elucidate a higher barrier for silicic acid at the cytoplasmic constrict resulting in longer residence time for silicon. Furthermore, our simulation studies explained the importance of conserved residues in loop-C and loop-D with a direct effect on pore dynamics and metalloid transport. Next we assessed contribution of predicted key residues for arsenic uptake, by functional complementation in yeast. With the aim of reducing arsenic uptake while maintaining beneficial elements uptake, we identified novel OsNIP2;1 mutants with substantial reduction in arsenic uptake in yeast. Conclusion: We provide a comprehensive assessment of pore lining residues of OsNIP2;1 with respect to metalloid uptake. The findings will expand mechanistic understanding of aquaporin’s metalloid selectivity and facilitate variant interpretation to develop novel alleles with preference for beneficial metalloid species and reducing hazardous ones.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback