Inferences for generalized Topp-Leone distribution under dual generalized order statistics with applications to Engineering and COVID-19 data

Loading...
Thumbnail Image
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This article accentuates the estimation of a two-parameter generalized Topp-Leone distribution using dual generalized order statistics (dgos). In the part of estimation, we obtain maximum likelihood (ML) estimates and approximate confidence intervals of the model parameters using dgos, in particular, based on order statistics and lower record values. The Bayes estimate is derived with respect to a squared error loss function using gamma priors. The highest posterior density credible interval is computed based on the MH algorithm. Furthermore, the explicit expressions for single and product moments of dgos from this distribution are also derived. Based on order statistics and lower records, a simulation study is carried out to check the efficiency of these estimators. Two real life data sets, one is for order statistics and another is for lower record values have been analyzed to demonstrate how the proposed methods may work in practice.
Description
Keywords
Citation