Durrmeyer-Type Generalization of -Bernstein Operators

dc.contributor.authorKajla, Arun
dc.contributor.authorMohiuddine, S,A
dc.contributor.authorAlotaibi, Abdullah
dc.date.accessioned2023-05-02T11:18:16Z
dc.date.available2023-05-02T11:18:16Z
dc.date.issued2022
dc.description.abstractIn the present manuscript, we consider -Bernstein-Durrmeyer operators involving a strictly positive continuous function. Firstly, we prove a Voronovskaja type, quantitative Voronovskaja type and Gr¨ uss-Voronovskaja type asymptotic formula, the rate of convergence by means of the modulus of continuity and for functions in a Lipschitz type space. Finally, we show that the numerical examples which describe the validity of the theoretical example and the effectiveness of the defined operators.en_US
dc.identifier.urihttp://hdl.handle.net/123456789/1103
dc.language.isoenen_US
dc.publisherMathematicsen_US
dc.subjectPositive Approximation, Steklov mean.en_US
dc.titleDurrmeyer-Type Generalization of -Bernstein Operatorsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Durrmeyer-Type Generalization of μ- Bernstein Operators.pdf
Size:
259.71 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: