Durrmeyer-Type Generalization of -Bernstein Operators
| dc.contributor.author | Kajla, Arun | |
| dc.contributor.author | Mohiuddine, S,A | |
| dc.contributor.author | Alotaibi, Abdullah | |
| dc.date.accessioned | 2023-05-02T11:18:16Z | |
| dc.date.available | 2023-05-02T11:18:16Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | In the present manuscript, we consider -Bernstein-Durrmeyer operators involving a strictly positive continuous function. Firstly, we prove a Voronovskaja type, quantitative Voronovskaja type and Gr¨ uss-Voronovskaja type asymptotic formula, the rate of convergence by means of the modulus of continuity and for functions in a Lipschitz type space. Finally, we show that the numerical examples which describe the validity of the theoretical example and the effectiveness of the defined operators. | en_US |
| dc.identifier.uri | http://hdl.handle.net/123456789/1103 | |
| dc.language.iso | en | en_US |
| dc.publisher | Mathematics | en_US |
| dc.subject | Positive Approximation, Steklov mean. | en_US |
| dc.title | Durrmeyer-Type Generalization of -Bernstein Operators | en_US |
| dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Durrmeyer-Type Generalization of μ- Bernstein Operators.pdf
- Size:
- 259.71 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: