Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Singh, H"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Mathematical modeling and parameter analysis of quantum antenna for IoT sensor-based biomedical applications
    (2023-08) Krishna, R; Yaduvanshi, RS; Singh, H; Rana, AK; Goyal, N
    In this paper, an equivalent combination of series and parallel R-L-C high-pass filter circuit is derived for a nano (quantum) antenna for the Internet of thing (IoT) based sensors for speedy data or organ image displaying in medical line surgeries. The proposed method utilized the sample frequency behavior of characteristics mode to develop a fundamental building block that superimposes to create the complete response. The resonance frequency, input impedance, and quality factor have been evaluated along with basic and higher-order resonating modes. The relation between quality factor, bandwidth, resonance frequency, and selectivity for higher order, increases the quantum circuits in terms of increased order of a filter, quality factor, and odd and even harmonics factors. Therefore, the basic circuits derivation factor of frequency coefficients are expanded in terms of polynomials and then they are expressed as a simple rational function from which the basic circuit parameters are calculated. In this circuit input impedance of each circuit’s element is complex. The real part of input impedance depends on frequency, depending on the frequency positive or negative value of the resistor, and the imaginary part of impedance modelling an inductor or capacitor due to the value of frequency. At cutoff frequency 511 THz, z11 and VSWR parameters are 34 Ω and 1.11, respectively. The proposed quantum DRA is tested at 5 THz, 10 THz, and 500 THz by calculating the electrical parameters like R, L, C and model performance is quite good as compared to existing ones. The dynamic impedance is dependent on the skin effect and enhances the detailed discussion below. The utilization of optical or quantum DRAs is as optical sensors in biomedical engineering, speedy wireless communication, and optical image solutions. Analyte material has been used for monitoring frequency deviation.
  • Loading...
    Thumbnail Image
    Item
    Mathematical modeling and parameter analysis of quantum antenna for IoT sensor-based biomedical applications
    (2023-08) Goyal, N; Rana, A; Singh, H; Krishna, R
    In this paper, an equivalent combination of series and parallel R-L-C high-pass filter circuit is derived for a nano (quantum) antenna for the Internet of thing (IoT) based sensors for speedy data or organ image displaying in medical line surgeries. The proposed method utilized the sample frequency behavior of characteristics mode to develop a fundamental building block that superimposes to create the complete response. The resonance frequency, input impedance, and quality factor have been evaluated along with basic and higher-order resonating modes. The relation between quality factor, bandwidth, resonance frequency, and selectivity for higher order, increases the quantum circuits in terms of increased order of a filter, quality factor, and odd and even harmonics factors. Therefore, the basic circuits derivation factor of frequency coefficients are expanded in terms of polynomials and then they are expressed as a simple rational function from which the basic circuit parameters are calculated. In this circuit input impedance of each circuit’s element is complex. The real part of input impedance depends on frequency, depending on the frequency positive or negative value of the resistor, and the imaginary part of impedance modelling an inductor or capacitor due to the value of frequency. At cutoff frequency 511 THz, z11 and VSWR parameters are 34 Ω and 1.11, respectively. The proposed quantum DRA is tested at 5 THz, 10 THz, and 500 THz by calculating the electrical parameters like R, L, C and model performance is quite good as compared to existing ones. The dynamic impedance is dependent on the skin effect and enhances the detailed discussion below. The utilization of optical or quantum DRAs is as optical sensors in biomedical engineering, speedy wireless communication, and optical image solutions. Analyte material has been used for monitoring frequency deviation.
  • Loading...
    Thumbnail Image
    Item
    SEIAQRDT model for the spread of novel coronavirus (COVID-19): A case study in India
    (2020-11) Kumari, P; Singh, H; Singh, S
    COVID-19 is a global pandemic declared by WHO. This pandemic requires the execution of planned control strate gies, incorporating quarantine, self-isolation, and tracing of asymptomatic cases. Mathematical modeling is one of the prominent techniques for predicting and controlling the spread of COVID-19. The predictions of earlier proposed epidemiological models (e.g. SIR, SEIR, SIRD, SEIRD, etc.) are not much accurate due to lack of consideration for transmission of the epidemic during the latent period. Moreover, it is important to classify infected individuals to control this pandemic. Therefore, a new mathematical model is proposed to incorporate infected individuals based on whether they have symptoms or not. This model forecasts the number of cases more accurately, which may help in better planning of control strategies. The model consists of eight compartments: susceptible (S), exposed (E), infected (I), asymptomatic (A), quarantined (Q), recovered (R), deaths (D), and insusceptible (T), accumulatively named as SEIAQRDT. This model is employed to predict the pandemic results for India and its majorly affected states. The estimated number of cases using the SEIAQRDT model is compared with SIRD, SEIR, and LSTM models. The relative error square analysis is used to verify the accuracy of the proposed model. The simulation is done on real datasets and results show the effectiveness of the proposed approach. These results may help the government and individuals to make the planning in this pandemic situation.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback