Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sharma, R"

Now showing 1 - 7 of 7
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Developments in conducting polymer-, metal oxide-, and carbon nanotube-based composite electrode materials for supercapacitors: a review
    (2024-03) Tundwal, A; Kumar, H; Binoj, B; Sharma, R; Kumar, G; Kumari, R; Dhayal, A; Yadav, A; Singh, D; Kumar, P
    Supercapacitors are the latest development in the field of energy storage devices (ESDs). A lot of research has been done in the last few decades to increase the performance of supercapacitors. The electrodes of supercapacitors are modified by composite materials based on conducting polymers, metal oxide nanoparticles, metal–organic frameworks, covalent organic frameworks, MXenes, chalcogenides, carbon nanotubes (CNTs), etc. In comparison to rechargeable batteries, supercapacitors have advantages such as quick charging and high power density. This review is focused on the progress in the development of electrode materials for supercapacitors using composite materials based on conducting polymers, graphene, metal oxide nanoparticles/nanofibres, and CNTs. Moreover, we investigated different types of ESDs as well as their electrochemical energy storage mechanisms and kinetic aspects. We have also discussed the classification of different types of SCs; advantages and drawbacks of SCs and other ESDs; and the use of nanofibres, carbon, CNTs, graphene, metal oxide– nanofibres, and conducting polymers as electrode materials for SCs. Furthermore, modifications in the development of different types of SCs such as pseudo-capacitors, hybrid capacitors, and electrical double-layer capacitors are discussed in detail; both electrolyte-based and electrolyte-free supercapacitors are taken into consideration. This review will help in designing and fabricating high-performance supercapacitors with high energy density and power output, which will act as an alternative to Li-ion batteries in the future.
  • Loading...
    Thumbnail Image
    Item
    Genome-wide in silico analysis of long intergenic non-coding RNAs from rice peduncles at the heading stage
    (2021-10) Kandpal, M; Dhaka, N; Sharma, R
    Long intergenic non-coding RNAs (lincRNAs) belong to the category of long non-coding RNAs (lncRNAs), originated from intergenic regions, which do not code for proteins. LincRNAs perform prominent role in regulation of gene expression during plant development and stress response by directly interacting with DNA, RNA, or proteins, or triggering production of small RNA regulatory molecules. Here, we identified 2973 lincRNAs and investigated their expression dynamics during pedun cle elongation in two Indian rice cultivars, Pokkali and Swarna, at the time of heading. Differential expression analysis revealed common and cultivar-specific expression patterns, which we utilized to infer the lincRNA candidates with potential involvement in peduncle elongation and panicle exsertion. Their putative targets were identified using in silico prediction methods followed by pathway mapping and literature-survey based functional analysis. Further, to infer the mechanism of action, we identified the lincRNAs which potentially act as miRNA precursors or target mimics.
  • Loading...
    Thumbnail Image
    Item
    MEASURING URBAN EXPANSION AND LAND USE/LAND COVER CHANGES USING REMOTE SENSING AND LANDSCAPE METRICS: A CASE OF REWARI CITY, INDIA
    (2024-05) Kanav, A; Kumar, S; Sharma, R; Kumar, J
    The industrial and economic development has initiated the rapid growth of small and medium-sized towns in India. Rewari City, a part of the National Capital Region of India, is undergoing rapid urban expansion. This study analyzes the process of urban expansion in Rewari city, its effect on land use & land cover dynamics and landscape spatial patterns. The methodology of the study is reliant on open-source Landsat satellite data, GIS-based unsupervised classification, and spatial metrics analysis. The city expansion has been analyzed for a period of 31 years, from 1989 to 2020, and population growth has been studied since 1901. Within the study period, built-up area increased by 704%, with an annual expansion rate of 12.8 %. The other land cover classes, such as agriculture land, vegetation, barren land, and water bodies shrank in size over the years. Between 1989 and 2020, 69.4 % of the increase in built up area came at the expense of vegetation and agricultural land. It was also found that per capita land consumption rate increased significantly from 0.0024 to 0.0084, hinting towards dispersed and low-density development. Built-up land had a growth rate nearly 5 times higher than population, indicating urban sprawl. An evaluation of different landscape metrics revealed that the landscape of Rewari has lost land use diversity. The findings of this study offer information about the present state of urban growth. It also serves as a valuable resource for formulating comprehensive planning and development policies, ensuring the promotion of sustainable urban development.
  • Loading...
    Thumbnail Image
    Item
    Metal oxide decorated polyaniline based multifunctional nanocomposites: An experimental and theoretical approach
    (2023-05) Yadav, A; Kumar, H; Sharma, R
    When combined with metal oxide nanoparticles, conducting polymers may result in unique or synergistic effects in their properties. Fe/Mn/CuO/PANI (FMC/PANI) based nanocomposites (NCs) were explored for five different novel applications. FTIR, UV–visible, XRD, Raman, and FESEM methods were used to identify the NCs. The anti corrosive, photocatalytic, magnetic, antibacterial, and electrical properties were investigated by experimental and theoretical (DFT) methods. The computational technique was used for frequency, geometry optimization, and energy study. Different thermodynamic, kinetic, and molecular orbital parameters were investigated by the DFT study for the NCs. The anti-corrosive, photocatalytic, antibacterial, electrical, and magnetic properties of NCs were investigated at different concentrations. The FMC/PANI NCs show a maximum of 85 ± 0.2% CIE for MS in 1.0 M HCl solution. The magnetic study proves the paramagnetic nature of NCs. The photocatalytic activity of FMC/PANI NCs was investigated against MO dye under UV light. The antibacterial property of FMC nano particles (NPs) was investigated against gram-positive and gram-negative bacterial strains, that is, B. subtilis and E. coli, respectively. The ZOI was compared with six standard antibiotics and found to be comparable with common antibiotics. The FMC/PANI-based NCs were proven to be perfect photocatalytic, magnetic, antibacte rial, electrical conductors, and anti-corrosive agents.
  • Loading...
    Thumbnail Image
    Item
    Nano-Conjugated Food-Derived Antimicrobial Peptides As Natural Biopreservatives: A Review of Technology and Applications
    (2023-01) Singh, B; Rohit; Manju, K; Sharma, R
    In recent years, microbial food safety has garnered a lot of attention due to worldwide expansion of the food industry and processed food products. This has driven the development of novel preservation methods over traditional ones. Food-derived antimicrobial peptides (F-AMPs), produced by the proteolytic degradation of food proteins, are emerging as pragmatic alternatives for extension of the shelf-life of food products. The main benefits of F-AMPs are their wide spectrum antimicrobial efficacy and low propensity for the development of antibiotic resistance. However, direct application of F-AMPs in food limits its efficacy during storage. Therefore, the development of nanocarriers for the conjugation and distribution of potential AMPs may hold great potential to increase their bioactivity. This review highlights the significance of F-AMPs as a feasible and sustainable alternative to conventional food preservatives. The most recent developments in pro duction, characterization, and mode of action of these AMPs against planktonic and biofilm forming pathogens are thoroughly discussed in this work. Moreover, nano-conjugation of F-AMPs with differ ent nano-carriers and potential future application in food packaging are emphasized. This review may aid in comprehending the nano-conjugation of F-AMPs and offer insightful recommendations for further exploration and potential uses in the food processing industry.
  • Loading...
    Thumbnail Image
    Item
    Probiotic fermentation of polyphenols: potential sources of novel functional foods
    (2022-09) Sharma, R; Diwan, B; Singh, B; Kulshrestha, S
    Fermented functional food products are among the major segments of food processing industry. Fermentation imparts several characteristic effects on foods including the enhancement of organoleptic characteristics, increased shelf-life, and production of novel health beneficial compounds. However, in addition to macronutrients present in the food, secondary metabolites such as polyphenols are also emerging as suitable fermentable substrates. Despite the traditional antimicrobial view of polyphenols, accumulating research shows that polyphenols exert differential effects on bacterial communities by suppressing the growth of pathogenic microbes while concomitantly promoting the proliferation and survival of probiotic bacteria. Conversely, probiotic bacteria not only survive among polyphenols but also induce their fermentation which often leads to improved bioavailability of polyphenols, production of novel metabolic intermediates, increased polyphenolic content, and thus enhanced functional capacity of the fermented food. In addition, selective fermentation of combinations of polyphenol-rich foods or fortification with polyphenols can result in novel functional foods. The present narrative review specifically explores the potential of polyphenols as fermentable substrates in functional foods. We discuss the emerging bidirectional relationship between polyphenols and probiotic bacteria with an aim at promoting the development of novel functional foods based on the amalgama tion of probiotic bacteria and polyphenols.
  • Loading...
    Thumbnail Image
    Item
    RNA-Seq Analysis of Developing Grains of Wheat to Intrigue into the Complex Molecular Mechanism of the Heat Stress Response
    (2022-06) Paul, S; Duhan, J; Jaiswal, S; Angadi, U; Sharma, R; Raghav, N; Gupta, O; Sheoran, S; Sharma, P; Singh, R; Rai, A; Singh, G; Kumar, D
    Heat stress is one of the significant constraints affecting wheat production worldwide. To ensure food security for ever-increasing world population, improving wheat for heat stress tolerance is needed in the presently drifting climatic conditions. At the molecular level, heat stress tolerance in wheat is governed by a complex interplay of various heat stress associated genes. We used a comparative transcriptome sequencing approach to study the effect of heat stress (5°C above ambient threshold temperature of 20°C) during grain f illing stages in wheat genotype K7903 (Halna). At 7 DPA (days post-anthesis), heat stress treatment was given at four stages: 0, 24, 48, and 120 h. In total, 115,656 wheat genes were identified, including 309 differentially expressed genes (DEGs) involved in many critical processes, such as signal transduction, starch synthetic pathway, antioxidant pathway, and heat stress-responsive conserved and uncharacterized putative genes that play an essential role in maintaining the grain filling rate at the high temperature. A total of 98,412 Simple Sequences Repeats (SSR) were identified from de novo transcriptome assembly of wheat and validated. The miRNA target prediction from differential expressed genes was performed by psRNATarget server against 119 mature miRNA. Further, 107,107 variants including 80,936 Single nucleotide polymorphism (SNPs) and 26,171 insertion/ deletion (Indels) were also identified in de novo transcriptome assembly of wheat and wheat genome Ensembl version 31. The present study enriches our understanding of known heat response mechanisms during the grain filling stage supported by discovery of novel transcripts, microsatellite markers, putative miRNA targets, and genetic variant. This enhances gene functions and regulators, paving the way for improved heat tolerance in wheat varieties, making them more suitable for production in the current climate change scenario.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback