Browsing by Author "Shah, M"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Covering assisted intuitionistic fuzzy bi‑selection technique for data reduction and its applications(2024) Saini, R; Tiwari, A; Nath, A; Singh, P; Maurya, S; Shah, MThe dimension and size of data is growing rapidly with the extensive applications of computer science and lab based engineering in daily life. Due to availability of vagueness, later uncertainty, redundancy, irrelevancy, and noise, which imposes concerns in building efective learning models. Fuzzy rough set and its extensions have been applied to deal with these issues by various data reduction approaches. However, construction of a model that can cope with all these issues simultaneously is always a challenging task. None of the studies till date has addressed all these issues simultaneously. This paper investigates a method based on the notions of intuitionistic fuzzy (IF) and rough sets to avoid these obstacles simultaneously by putting forward an interesting data reduction technique. To accomplish this task, frstly, a novel IF similarity relation is addressed. Secondly, we establish an IF rough set model on the basis of this similarity relation. Thirdly, an IF granular structure is presented by using the established similarity relation and the lower approximation. Next, the mathematical theorems are used to validate the proposed notions. Then, the importance-degree of the IF granules is employed for redundant size elimination. Further, signifcance-degree-preserved dimensionality reduction is discussed. Hence, simultaneous instance and feature selection for large volume of high-dimensional datasets can be performed to eliminate redundancy and irrelevancy in both dimension and size, where vagueness and later uncertainty are handled with rough and IF sets respectively, whilst noise is tackled with IF granular structure. Thereafter, a comprehensive experiment is carried out over the benchmark datasets to demonstrate the efectiveness of simultaneous feature and data point selection methods. Finally, our proposed methodology aided framework is discussed to enhance the regression performance for IC50 of Antiviral Peptides.Item Hybrid similarity relation based mutual information for feature selection in intuitionistic fuzzy rough framework and its applications(2024) Tiwari, A; Saini, R; Nath, A; Singh, P; Shah, MFuzzy rough entropy established in the notion of fuzzy rough set theory, which has been efectively and efciently applied for feature selection to handle the uncertainty in real-valued datasets. Further, Fuzzy rough mutual information has been presented by integrating information entropy with fuzzy rough set to measure the importance of features. However, none of the methods till date can handle noise, uncertainty and vagueness simultaneously due to both judgement and identifcation, which lead to degrade the overall performances of the learning algorithms with the increment in the number of mixed valued conditional features. In the current study, these issues are tackled by presenting a novel intuitionistic fuzzy (IF) assisted mutual information concept along with IF granular structure. Initially, a hybrid IF similarity relation is introduced. Based on this relation, an IF granular structure is introduced. Then, IF rough conditional and joint entropies are established. Further, mutual information based on these concepts are discussed. Next, mathematical theorems are proved to demonstrate the validity of the given notions. Thereafter, signifcance of the features subset is computed by using this mutual information, and corresponding feature selection is suggested to delete the irrelevant and redundant features. The current approach efectively handles noise and subsequent uncertainty in both nominal and mixed data (including both nominal and category variables). Moreover, comprehensive experimental performances are evaluated on real-valued benchmark datasets to demonstrate the practical validation and efectiveness of the addressed technique. Finally, an application of the proposed method is exhibited to improve the prediction of phospholipidosis positive molecules. RF(h2o) produces the most efective results till date based on our proposed methodology with sensitivity, accuracy, specifcity, MCC, and AUC of 86.7%, 90.1%, 93.0% , 0.808, and 0.922 respectively.