Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Rapoport, A"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Bioacetoin Production by Bacillus subtilis subsp. subtilis Using Enzymatic Hydrolysate of Lignocellulosic Biomass
    (2023-07) Saini, M; Rapoport, A; Tiwari, S; Singh, D
    Abstract: Acetoin is an important bio-product useful in the chemical, food and pharmaceutical industries. Microbial fermentation is the major process for the production of bioacetoin, as the petroleum resources used in chemical methods are depleting day by day. Bioacetoin production using wild microorganisms is an easy, eco-friendly and economical method for the production of bioacetoin. In the present study, culture conditions and nutritional requirements were optimized for bioacetoin production by a wild and non-pathogenic strain of B. subtilis subsp. subtilis JJBS250. The bacterial culture produced maximum bioacetoin (259 mg L−1 ) using peptone (3%) and sucrose (2%) at 30 ◦C, 150 rpm and pH 7.0 after 24 h. Further supplementation of combinatorial nitrogen sources, i.e., peptone (1%) and urea (0.5%), resulted in enhanced titre of bioacetoin (1017 mg L−1 ) by the bacterial culture. An approximately 46.22–fold improvement in bioacetoin production was achieved after the optimization process. The analysis of samples using thin layer chromatography confirmed the presence of bioacetoin in the culture filtrate. The enzymatic hydrolysate was obtained by saccharification of pretreated rice straw and sugarcane bagasse using cellulase from Myceliophthora thermophila. Fermentation of the enzymatic hydrolysate (3%) of pretreated rice straw and sugarcane bagasse by the bacterial culture resulted in 210 and 473.17 mgL−1 bioacetoin, respectively. Enzy matic hydrolysates supplemented with peptone as a nitrogen source showed a two to four-fold improvement in the production of bioacetoin. Results have demonstrated the utility of wild type B. subtilis subsp. subtilis JJBS250 as a potential source for economical bioacetoin production by making use of renewable and cost-effective lignocellulosic substrate. Therefore, this study will help in the sustainable management of agricultural waste for the industrial production of bioacetoin, and in combating environmental pollution.
  • Loading...
    Thumbnail Image
    Item
    Biotechnological Potential of Lignocellulosic Biomass as Substrates for Fungal Xylanases and Its Bioconversion into Useful Products: A Review
    (2024-01) Dahiya, S; Rapoport, A; Singh, B
    Lignocellulose, the most abundant and renewable plant resource, is a complex of polymers mainly composed of polysaccharides (cellulose and hemicelluloses) and an aromatic polymer (lignin). Utilisation of lignocellulosic biomass for biotechnological applications has increased over the past few years. Xylan is the second most abundant carbohydrate in plant cell walls, and structurally, it is a heteropolysaccharide with a backbone composed of β-1,4-d-xylopyranosyl units connected with glycosidic bonds. Xylanases degrade this complex structure of xylan and can be produced by various microorganisms, including fungi, bacteria, and yeasts. Lignocellulosic biomass is the most economical substrate for the production of fungal xylanases. The bioconversion of lignocellulosic biomass to industrially important products, i.e., xylooligosaccharides and biofuels, is possible via the application of xylanases. These enzymes also play a key role in enhancing the nutrition of food and feed and the bio-bleaching of paper and kraft pulp. However, the demand for more potent and efficient xylanases with high activity has increased, which is fulfilled by involving recombinant DNA technology. Hence, in this review, we thoroughly discussed the biotechnological potential of lignocellulosic biomass for the production of fungal xylanases, their purification, molecular strategies for improving their efficiency, and their utilisation for the production of valuable products and in other industrial processes.
  • Loading...
    Thumbnail Image
    Item
    Biotechnological Potential of Lignocellulosic Biomass as Substrates for Fungal Xylanases and Its Bioconversion into Useful Products: A Review
    (2024-01) Dahiya, S; Rapoport, A; Singh, B
    Lignocellulose, the most abundant and renewable plant resource, is a complex of polymers mainly composed of polysaccharides (cellulose and hemicelluloses) and an aromatic polymer (lignin). Utilisation of lignocellulosic biomass for biotechnological applications has increased over the past few years. Xylan is the second most abundant carbohydrate in plant cell walls, and structurally, it is a heteropolysaccharide with a backbone composed of β-1,4-d-xylopyranosyl units connected with glycosidic bonds. Xylanases degrade this complex structure of xylan and can be produced by various microorganisms, including fungi, bacteria, and yeasts. Lignocellulosic biomass is the most economical substrate for the production of fungal xylanases. The bioconversion of lignocellulosic biomass to industrially important products, i.e., xylooligosaccharides and biofuels, is possible via the application of xylanases. These enzymes also play a key role in enhancing the nutrition of food and feed and the bio-bleaching of paper and kraft pulp. However, the demand for more potent and efficient xylanases with high activity has increased, which is fulfilled by involving recombinant DNA technology. Hence, in this review, we thoroughly discussed the biotechnological potential of lignocellulosic biomass for the production of fungal xylanases, their purification, molecular strategies for improving their efficiency, and their utilisation for the production of valuable products and in other industrial processes.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback