Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Punia, M"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Co3O4 quantum dot decorated polypyrrole nanocomposites as a flexible, conducting, anticorrosive and antibacterial agent: sustainable experimental and theoretical approach†
    (2023-02) Kumar, H; Luthra, M; Punia, M; Kaur, P
    Self-assembled cobalt oxide quantum dots (QDs) were prepared by the inverse micelle technique. Polypyrrole (PPy) was synthesized by the chemical-oxidative method. Co3O4 QD-based PPy nanocomposites (NCs) were prepared by an in situ method. The Co3O4 QDs, PPy, and Co3O4@PPy NCs were characterized by TEM, FTIR, X-ray diffraction, and UV-visible techniques. The size of Co3O4 QDs, PPy, and Co3O4@PPy NCs was obtained by powder XRD and TEM methods. Computational (DFT) and adsorption (Langmuir and Henry) studies were carried out to support experimental data. Co3O4@PPy NCs show a maximum of 81.58% protection to mild steel in an acidic medium. The antibacterial activity of Co3O4@PPy NCs was comparable to that of Hexa disk (standard antibiotics). The Co3O4@PPy NCs were proven to be flexible, conducting, corrosion inhibiting, and possess antibacterial properties. The NCs find applications in soft electronics, the pharmaceutical industry, corrosion inhibitors for metals and their alloys, and flexible (moldable) display devices for sustainable developments
  • Loading...
    Thumbnail Image
    Item
    PANI encapsulated α-MnO2 nanocomposites as photocatalytic, antibacterial and anticorrosive agents: Sustainable experimental and theoretical studies
    (2023-06) Kumar, H; Luthra, M; Punia, M; Yadav, A
    Metal nanoparticles and conducting polymers have applications in the fields like purification, separation, adsorption, photocatalytic, antibacterial, sensors, electrical conductivity, etc. The α-MnO2 nanoparticles, and polyaniline (PANI) were synthesized by the reverse micelle and chemical oxidative techniques, respectively. An in-situ technique was used for the synthesis of α-MnO2/PANI nanocomposites (NCs). The characterization of α-MnO2 nanoparticles and NCs was carried out by XRD, TEM, FTIR, and UV–visible techniques. The experimental data was supported by a theoretical (computational) study. Corrosion inhibition, antibacterial, and photo catalytic activity of α-MnO2/PANI NCs were explored. The NCs show a maximum of 87 ± 0.1% corrosion in hibition efficiency. The NCs (100 ppm concentration) degrade 89.15 ± 1.1% of methyl orange dye after 3 h of UV exposure. The photodegradation of dye follows pseudo-first order kinetics with a rate constant of 0.0657 min− 1 . The mechanism of photodegradation is supported by potentiostatic photocurrent measurement, imped ance spectroscopy, pH variation, and chemical oxygen demand. The antibacterial property of NCs was compared to standard Hexa disk against Gram-positive and Gram-negative bacterial strains. The NCs show 18.5 mm and 15.3 mm Zone of Inhibition (1000 ppm) for S. epidermis and E. coli, respectively. The α-MnO2/PANI NCs show very good anti-corrosive, antibacterial, and photocatalytic properties.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback