Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Grover, Minakshi"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    One‑pot microbial bioconversion of wheat bran ferulic acid to biovanillin
    (3 Biotech, 2021) Sharma, Abha; Singh, Jyoti; Tomar, Govind singh; Singh, Surender; Grover, Minakshi; Nain, Lata
    Due to growing consumer preference towards natural ingredients in food products, the production of flavors by microbial biotransformation of agrowastes provides an eco-friendly, cost-effective and sustainable pathway for biovanillin production. In the present study, biovanillin was produced by microbial biotransformation of ferulic acid (FA) using Streptomyces sp. ssr-198. The strain was able to grow in glucose medium supplemented with 1 g/L FA and produce 20.91 ± 1.11 mg/L vanillin within 96 h, along with 5.78 ± 0.13 mg/L vanillic acid in 144 h. Estimation of enzymes involved in FA degradation detected maximum feruloyl-CoA synthetase activity (1.21 ± 0.03 U/mg protein) at 96 h and maximum vanillin dehydrogenase activity (0.31 ± 0.008 U/mg protein) at 168 h, with small amounts of ferulic acid esterase activity (0.13 ± 0.002 U/mg protein) in the fermentation medium. Further, the glucose deficient production medium supplemented with 3 g/L of ferulic acid when inoculated with Streptomyces sp. ssr-198 (6% wet weight) produced maximum vanillin (685 ± 20.11 mg/L) within 72 h at 37 °C under agitation (150 rpm) and declined thereafter. Furthermore, in a one-pot experiment, wherein crude ferulic acid esterase (700 IU/g of substrate) from Enterococcus lactis SR1 was added into 10% w/v wheat bran (natural source of ferulic acid) based medium and was inoculated with 1% w/v of Streptomyces sp. ssr-198 resulted in maximum vanillin production (1.02 ± 0.02 mg/g of substrate) within 60 h of incubation. The study provides an insight into synergistic effect of using FAE of E. lactis SR1 and Streptomyces sp. ssr-198 for bioproduction of biovanillin using agro residues.
  • Loading...
    Thumbnail Image
    Item
    Production of ethanol, lipid and lactic acidfrom mixed agrowastes hydrolysate
    (Natural Product Research, 2022) Singh, Jyoti; Sharma, Abha; Sharma, Pushpendra; Tomar, Govind singh; Grover, Minakshi; Singh, Surender; Nain, Lata
    To combat the shortage of single agro-residue and overcome the problem of seasonal availability, it is beneficial to use mixture of lignocellulosic biomasses. In the present study, efforts were made to use mixed lignocellulosic biomass for production of bioethanol, along with microbial lipids and lactic acid. Upon enzymatic hydrolysis of mixed biomass at varied proportions it was observed that mixture of paddy straw and jute in the ratio 3:1 resulted in best sugar yield (41.50 g/L) at 10% substrate loading. Ethanolic fermentation of mixed substrate hydrolysate by thermotolerant yeast, Saccharomyces cerevisiae JRC6 resulted in 8.39 g/L of ethanol. To maintain sustainability and economic impact, oleaginous yeast (Trichosporon mycotoxinivorans S2) and lactic acid bacteria (Lactobacillus plantarum LP-9) were used for lipid production (14.5 g/L) and lactic acid production (11.08 g/L), respectively. Therefore, this study explored the potential of mixed lignocellulosic biomass to be exploited for production of various value-added products.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback