Browsing by Author "Goyal, Nitin"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item E-Learning environment based intelligent profiling system for enhancing user adaptation(Electronics, 2022) Kaur, Ramneet; Gupta, Deepali; Madhukar, Mani; Singh, Aman; Abdelhaq, Maha; Alsaqour, Raed; Breñosa, Jose; Goyal, NitinOnline learning systems have expanded significantly over the last couple of years. Massive Open Online Courses (MOOCs) have become a major trend on the internet. During the COVID-19 pandemic, the count of learner enrolment has increased in various MOOC platforms like Coursera, Udemy, Swayam, Udacity, FutureLearn, NPTEL, Khan Academy, EdX, SWAYAM, etc. These platforms offer multiple courses, and it is difficult for online learners to choose a suitable course as per their requirements. In order to improve this e-learning education environment and to reduce the drop-out ratio, online learners will need a system in which all the platform’s offered courses are compared and recommended, according to the needs of the learner. So, there is a need to create a learner’s profile to analyze so many platforms in order to fulfill the educational needs of the learners. To develop a profile of a learner or user, three input parameters are considered: personal details, educational details, and knowledge level. Along with these parameters, learners can also create their user profiles by uploading their CVs or LinkedIn. In this paper, the major innovation is to implement a user interface-based intelligent profiling system for enhancing user adaptation in which feedback will be received from a user and courses will be recommended according to user/learners’ preferences.Item Energy-aware live VM migration using ballooning in cloud data center(Electronics, 2022) Gupta, Neha; GuptaK, Kamali; Qahtani, Abdulrahman M.; Gupta, Deepali; Alharithi, Fahd S.; Singh, Aman; Goyal, NitinThe demand for digitization has inspired organizations to move towards cloud computing, which has increased the challenge for cloud service providers to provide quality service. One of the challenges is energy consumption, which can shoot up the cost of using computing resources and has raised the carbon footprint in the atmosphere; therefore, it is an issue that it is imperative to address. Virtualization, bin-packing, and live VM migration techniques are the key resolvers that have been found to be efficacious in presenting sound solutions. Thus, in this paper, a new live VM migration algorithm, live migration with efficient ballooning (LMEB), is proposed; LMEB focuses on decreasing the size of the data that need to be shifted from the source to the destination server so that the total energy consumption of migration can be reduced. A simulation was performed with a specific configuration of virtual machines and servers, and the results proved that the proposed algorithm could trim down energy usage by 18%, migration time by 20%, and downtime by 20% in comparison with the existing approach of live migration with ballooning (LMB).Item Monitoring ambient parameters in the IoT precision agriculture scenario: An approachto sensor selection and hydroponic saffron cultivation(Sensors, 2022) Kour, Kanwalpreet; Gupta, Deepali; Gupta, Kamali; Anand, Divya; Elkamchouchi, Dalia H.; Goyal, Nitin; Ibrahim, MuhammadThe world population is on the rise, which demands higher food production. The reduction in the amount of land under cultivation due to urbanization makes this more challenging. The solution to this problem lies in the artificial cultivation of crops. IoT and sensors play an important role in optimizing the artificial cultivation of crops. The selection of sensors is important in order to ensure a better quality and yield in an automated artificial environment. There are many challenges involved in selecting sensors due to the highly competitive market. This paper provides a novel approach to sensor selection for saffron cultivation in an IoT-based environment. The crop used in this study is saffron due to the reason that much less research has been conducted on its hydroponic cultivation using sensors and its huge economic impact. A detailed hardware-based framework, the growth cycle of the crop, along with all the sensors, and the block layout used for saffron cultivation in a hydroponic medium are provided. The important parameters for a hydroponic medium, such as the concentration of nutrients and flow rate required, are discussed in detail. This paper is the first of its kind to explain the sensor configurations, performance metrics, and sensor-based saffron cultivation model. The paper discusses different metrics related to the selection, use and role of sensors in different IoT-based saffron cultivation practices. A smart hydroponic setup for saffron cultivation is proposed. The results of the model are evaluated using the AquaCrop simulator. The simulator is used to evaluate the value of performance metrics such as the yield, harvest index, water productivity, and biomass. The values obtained provide better results as compared to natural cultivation.Item System for Refrigeration(2023-01-24) Goyal, NitinItem A transfer learning-based artificial intelligence model for leaf disease assessment(Sustainability, 2022) Gautam, Vinay; Trivedi, Naresh K.; Singh, Aman; Mohamed, Heba G.; Goyal, Nitin; Kaur, PreetThe paddy crop is the most essential and consumable agricultural produce. Leaf disease impacts the quality and productivity of paddy crops. Therefore, tackling this issue as early as possible is mandatory to reduce its impact. Consequently, in recent years, deep learning methods have been essential in identifying and classifying leaf disease. Deep learning is used to observe patterns in disease in crop leaves. For instance, organizing a crop’s leaf according to its shape, size, and color is significant. To facilitate farmers, this study proposed a Convolutional Neural Networksbased Deep Learning (CNN-based DL) architecture, including transfer learning (TL) for agricultural research. In this study, different TL architectures, viz. InceptionV3, VGG16, ResNet, SqueezeNet, and VGG19, were considered to carry out disease detection in paddy plants. The approach started with preprocessing the leaf image; afterward, semantic segmentation was used to extract a region of interest. Consequently, TL architectures were tuned with segmented images. Finally, the extra, fully connected layers of the Deep Neural Network (DNN) are used to classify and identify leaf disease. The proposed model was concerned with the biotic diseases of paddy leaves due to fungi and bacteria. The proposed model showed an accuracy rate of 96.4%, better than state-of-the-art models with different variants of TL architectures. After analysis of the outcomes, the study concluded that the anticipated model outperforms other existing models.