Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alotaibi, Abdullah"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Bézier-summation-integral-type operators that include Pólya–Eggenberger distribution
    (Mathematics, 2022) Mohiuddine, Sayed Abdul; Kajla, Arun; Alotaibi, Abdullah
    We define the summation-integral-type operators involving the ideas of Pólya–Eggenberger distribution and Bézier basis functions, and study some of their basic approximation properties. In addition, by means of the Ditzian–Totik modulus of smoothness, we study a direct theorem as well as a quantitative Voronovskaja-type theorem for our newly constructed operators. Moreover, we investigate the approximation of functions with derivatives of bounded variation (DBV) of the aforesaid operators.
  • Loading...
    Thumbnail Image
    Item
    Durrmeyer-Type Generalization of -Bernstein Operators
    (Mathematics, 2022) Kajla, Arun; Mohiuddine, S,A; Alotaibi, Abdullah
    In the present manuscript, we consider -Bernstein-Durrmeyer operators involving a strictly positive continuous function. Firstly, we prove a Voronovskaja type, quantitative Voronovskaja type and Gr¨ uss-Voronovskaja type asymptotic formula, the rate of convergence by means of the modulus of continuity and for functions in a Lipschitz type space. Finally, we show that the numerical examples which describe the validity of the theoretical example and the effectiveness of the defined operators.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback