Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alharb, R"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    On estimation of P(Y < X) for inverse Pareto distribution based on progressively first failure censored data
    (2023-11) Alharb, R; Garg, R; Kumar, I; Kumari, A
    The stress-strength reliability (SSR) model ϕ = P(Y < X) is used in numerous disciplines like reliability engineering, quality control, medical studies, and many more to assess the strength and stresses of the systems. Here, we assume X and Y both are independent ran dom variables of progressively first failure censored (PFFC) data following inverse Pareto distribution (IPD) as stress and strength, respectively. This article deals with the estimation of SSR from both classical and Bayesian paradigms. In the case of a classical point of view, the SSR is computed using two estimation methods: maximum product spacing (MPS) and maximum likelihood (ML) estimators. Also, derived interval estimates of SSR based on ML estimate. The Bayes estimate of SSR is computed using the Markov chain Monte Carlo (MCMC) approximation procedure with a squared error loss function (SELF) based on gamma informative priors for the Bayesian paradigm. To demonstrate the relevance of the different estimates and the censoring schemes, an extensive simulation study and two pairs of real-data applications are discussed.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback