Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ahmed, S"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Fibonacci wavelet method for the numerical solution of a fractional relaxation–oscillation model
    (2023-10) Jahan, S; Ahmed, S; Yadav, P; Nisar, K
    In this paper, we have discussed the Fibonacci wavelet (FW) framework for numerical simulations of the fractional relaxation–oscillation model (FROM). Firstly, the fractional order operational matrices of integration associated with the FW are constructed via the block pulse functions. The operational matrices merged with the collocation method are used to convert the given problem into a system of algebraic equations that is solved by the Newton method. We conduct error analysis, perform numerical simulations, and present the corresponding results to establish the credibility and practical applicability of the proposed technique. Numerical examples are provided to show the efficiency of our approach. To show the accuracy of the FW-based numerical technique, the approximate solutions of FROM are compared with the exact solution and other existing methods. This research opens up new possibilities for using FW as a powerful tool for addressing complex mathematical problems in real-world systems.
  • Loading...
    Thumbnail Image
    Item
    Fibonacci wavelet method for the numerical solution of a fractional relaxation–oscillation model
    (2023-10) Jahan, S; Ahmed, S; Yadav, K; Nisar, K
    In this paper, we have discussed the Fibonacci wavelet (FW) framework for numerical simulations of the fractional relaxation–oscillation model (FROM). Firstly, the fractional order operational matrices of integration associated with the FW are constructed via the block pulse functions. The operational matrices merged with the collocation method are used to convert the given problem into a system of algebraic equations that is solved by the Newton method. We conduct error analysis, perform numerical simulations, and present the corresponding results to establish the credibility and practical applicability of the proposed technique. Numerical examples are provided to show the efficiency of our approach. To show the accuracy of the FW-based numerical technique, the approximate solutions of FROM are compared with the exact solution and other existing methods. This research opens up new possibilities for using FW as a powerful tool for addressing complex mathematical problems in real-world systems.
  • Loading...
    Thumbnail Image
    Item
    Haar wavelet based numerical technique for the solutions of fractional advection diffusion equations
    (2024-03) Ahmed, S; Jahan, S; Nisar, K
  • Loading...
    Thumbnail Image
    Item
    On mathematical modelling of measles disease via collocation approach
    (2024-05) Ahmed, S; Jahan, S; Shah, K; Abdeljawad, T
    Measles, a highly contagious viral disease, spreads primarily through respiratory droplets and can result in severe complications, often proving fatal, especially in children. In this article, we propose an algorithm to solve a system of fractional nonlinear equations that model the measles dis ease. We employ a fractional approach by using the Caputo operator and validate the model’s by applying the Schauder and Banach fixed-point theory. The fractional derivatives, which constitute an essential part of the model can be treated precisely by using the Broyden and Haar wavelet collocation methods (HWCM). Furthermore, we evaluate the system’s stability by implementing the Ulam-Hyers approach. The model takes into account multiple factors that influence virus transmission, and the HWCM offers an effective and precise solution for understanding insights into transmission dynamics through the use of fractional derivatives. We present the graphical results, which offer a comprehensive and invaluable perspective on how various parameters and fractional orders influence the behaviours of these compartments within the model. The study emphasizes the importance of modern techniques in understanding measles outbreaks, suggesting the methodology’s applicability to various mathematical models. Simulations conducted by using MATLAB R2022a software demonstrate practical implemen tation, with the potential for extension to higher degrees with minor modifications. The simulation’s findings clearly show the efficiency of the proposed approach and its application to further extend the field of mathematical modelling for infectious illnesses.
  • Loading...
    Thumbnail Image
    Item
    Wavelets collocation method for singularly perturbed differential–difference equations arising in control system
    (2023-12) Ahmed, S; Jahan, S; Ansari, K; Shah, K
    In this paper, we present a wavelet collocation method for efficiently solving singularly perturbed differential–difference equations (SPDDEs) and one-parameter singularly perturbed differential equations (SPDEs) taking into account the singular perturbations inherent in control systems. These equations represent a class of mathematical models that exhibit a combination of differential and difference equations, making their analysis and solution challenging. The terms that include negative and positive shifts were approximated using Taylor series expansion. The main aim of this technique is to convert the problems by using operational matrices of integration of Haar wavelets into a system of algebraic equations that can be solved using Newton’s method. The adaptability and multi-resolution properties of wavelet functions offer the ability to capture system behavior across various scales, effectively handling singular perturbations present in the equations. Numerical experiments were conducted to showcase the effectiveness and accuracy of the wavelet collocation method, demonstrating its potential as a reliable tool for analyzing and solving SPDDEs in control system.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback