Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Aggarwal, M"

Now showing 1 - 7 of 7
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Federated Learning on Internet of Things: Extensive and Systematic Review
    (2024-05) Aggarwal, M; Khullar, V; Rani, S; Prola, T; Bhattacharjee, S; Shawon, S; Goyal, N
    The proliferation of IoT devices requires innovative approaches to gaining insights while preserving privacy and resources amid unprecedented data generation. However, FL development for IoT is still in its infancy and needs to be explored in various areas to understand the key challenges for deployment in real-world scenarios. The paper systematically reviewed the available literature using the PRISMA guiding principle. The study aims to provide a detailed overview of the increasing use of FL in IoT networks, including the architecture and challenges. A systematic review approach is used to collect, categorize and analyze FL-IoT-based articles. A search was performed in the IEEE, Elsevier, Arxiv, ACM, and WOS databases and 92 articles were finally examined. Inclusion measures were published in English and with the keywords “FL” and “IoT”. The methodology begins with an overview of recent advances in FL and the IoT, followed by a discussion of how these two technologies can be integrated. To be more specific, we examine and evaluate the capabilities of FL by talking about communication protocols, frameworks and architecture. We then present a comprehensive analysis of the use of FL in a number of key IoT applications, including smart healthcare, smart transportation, smart cities, smart industry, smart finance, and smart agriculture. The key findings from this analysis of FL IoT services and applications are also presented. Finally, we performed a comparative analysis with FL IID (independent and identical data) and non-ID, traditional centralized deep learning (DL) approaches. We concluded that FL has better performance, especially in terms of privacy protection and resource utilization. FL is excellent for preserving privacy because model training takes place on individual devices or edge nodes, eliminating the need for centralized data aggregation, which poses significant privacy risks. To facilitate development in this rapidly evolving field, the insights presented are intended to help practitioners and researchers navigate the complex terrain of FL and IoT.
  • Loading...
    Thumbnail Image
    Item
    Federated Transfer Learning for Rice-Leaf Disease Classification across Multiclient Cross-Silo Datasets
    (2023-09) Aggarwal, M; Khullar, V; Goyal, N; Gautam, R; Singh, A
    Paddy leaf diseases encompass a range of ailments affecting rice plants’ leaves, arising from factors like bacteria, fungi, viruses, and environmental stress. Precision agriculture leverages technologies for enhanced crop production, with disease detection being a vital element. Prompt identification of diseases in paddy leaves is critical for curtailing their propagation and reducing crop damage. However, manually diagnosing paddy diseases in regions with vast agricultural areas and limited experts proves immensely difficult. The utilization of machine learning (ML) and deep learning (DL) for diagnosing diseases in agricultural crops appears to be effective and well-suited for widespread application. These ML/DL methods cannot ensure data privacy, as they involve sharing training data with a central server, overlooking competitive and regulatory considerations. As a solution, federated learning (FL) aims to facilitate decentralized training to tackle the identified limitations of centralized training. This paper utilizes the FL approach for the classification of rice-leaf diseases. The manuscript presents an effective approach for rice-leaf disease classification with a federated architecture, ensuring data privacy. We have compiled an unbalanced dataset of rice-leaf disease images, categorized into four diseases with their respective image counts: bacterial blight (1584), brown spot (1440), blast (1600), and tungro (1308). The proposed method, called federated transfer learning (F-TL), maintains privacy for all connected devices using a decentralized client-server setup. Both IID (independent and identically distributed) and non-IID datasets were utilized for testing the F-TL framework after preprocessing. Initially, we conducted an effectiveness analysis of CNN and eight transfer learning models for rice-leaf disease classification. Among them, MobileNetV2 and EfficientNetB3 outperformed the other transfer-learned models. Subsequently, we trained these models using both IID and non-IID datasets in a federated learning environment. The framework’s performance was assessed through diverse scenarios, comparing it with traditional and federated learning models. The evaluation considered metrics like validation accuracy, loss as well as resource utilization such as CPU and RAM. EfficientNetB3 excelled in training, achieving 99% accuracy with 0.1 loss for both IID and non-IID datasets. MobilenetV2 showed slightly lower training accuracy at 98% (IID) and 90% (non-IID) with losses of 0.4 and 0.6, respectively. In evaluation, EfficientNetB3 maintained 99% accuracy with 0.1 loss for both datasets, while MobilenetV2 achieved 90% (IID) and 97% (non-IID) accuracy with losses of 0.6 and 0.2, respectively. Results indicated the F-TL framework’s superiority over traditional distributed deep-learning classifiers, demonstrating its effectiveness in both single and multiclient instances. Notably, the framework’s strengths lie in its cost-effectiveness and data-privacy assurance for resource-constrained edge devices, positioning it as a valuable alternative for rice-leaf disease classification compared to existing tools.
  • Loading...
    Thumbnail Image
    Item
    Federated Transfer Learning for Rice-Leaf Disease Classification across Multiclient Cross-Silo Datasets
    (2023-09) Aggarwal, M; Khullar, V; Goyal, N
    Paddy leaf diseases encompass a range of ailments affecting rice plants’ leaves, arising from factors like bacteria, fungi, viruses, and environmental stress. Precision agriculture leverages technologies for enhanced crop production, with disease detection being a vital element. Prompt identification of diseases in paddy leaves is critical for curtailing their propagation and reducing crop damage. However, manually diagnosing paddy diseases in regions with vast agricultural areas and limited experts proves immensely difficult. The utilization of machine learning (ML) and deep learning (DL) for diagnosing diseases in agricultural crops appears to be effective and well-suited for widespread application. These ML/DL methods cannot ensure data privacy, as they involve sharing training data with a central server, overlooking competitive and regulatory considerations. As a solution, federated learning (FL) aims to facilitate decentralized training to tackle the identified limitations of centralized training. This paper utilizes the FL approach for the classification of rice-leaf diseases. The manuscript presents an effective approach for rice-leaf disease classification with a federated architecture, ensuring data privacy. We have compiled an unbalanced dataset of rice-leaf disease images, categorized into four diseases with their respective image counts: bacterial blight (1584), brown spot (1440), blast (1600), and tungro (1308). The proposed method, called federated transfer learning (F-TL), maintains privacy for all connected devices using a decentralized client-server setup. Both IID (independent and identically distributed) and non-IID datasets were utilized for testing the F-TL framework after preprocessing. Initially, we conducted an effectiveness analysis of CNN and eight transfer learning models for rice-leaf disease classification. Among them, MobileNetV2 and EfficientNetB3 outperformed the other transfer-learned models. Subsequently, we trained these models using both IID and non-IID datasets in a federated learning environment. The framework’s performance was assessed through diverse scenarios, comparing it with traditional and federated learning models. The evaluation considered metrics like validation accuracy, loss as well as resource utilization such as CPU and RAM. EfficientNetB3 excelled in training, achieving 99% accuracy with 0.1 loss for both IID and non-IID datasets. MobilenetV2 showed slightly lower training accuracy at 98% (IID) and 90% (non-IID) with losses of 0.4 and 0.6, respectively. In evaluation, EfficientNetB3 maintained 99% accuracy with 0.1 loss for both datasets, while MobilenetV2 achieved 90% (IID) and 97% (non-IID) accuracy with losses of 0.6 and 0.2, respectively. Results indicated the F-TL framework’s superiority over traditional distributed deep-learning classifiers, demonstrating its effectiveness in both single and multiclient instances. Notably, the framework’s strengths lie in itscost-effectiveness and data-privacy assurance for resource-constrained edge devices, positioning it as a valuable alternative for rice-leaf disease classification compared to existing tools.
  • Loading...
    Thumbnail Image
    Item
    Lightweight Federated Learning for Rice Leaf Disease Classification Using Non Independent and Identically Distributed Images
    (2023-08) Aggarwal, M; Khullar, V; Goyal, N
    Rice (Oryza sativa L.) is a vital food source all over the world, contributing 15% of the protein and 21% of the energy intake per person in Asia, where most rice is produced and consumed. However, bacterial, fungal, and other microbial diseases that have a negative effect on the health of plants and crop yield are a major problem for rice farmers. It is challenging to diagnose these diseases manually, especially in areas with a shortage of crop protection experts. Automating disease identifi cation and providing readily available decision-support tools are essential for enabling effective rice leaf protection measures and minimising rice crop losses. Although there are numerous classification systems for the diagnosis of rice leaf disease, no reliable, secure method has been identified that meets these needs. This paper proposes a lightweight federated deep learning architecture while maintaining data privacy constraints for rice leaf disease classification. The distributed client–server design of this framework protects the data privacy of all clients, and by using independent and identically distributed (IID) and non-IID data, the validity of the federated deep learning models was examined. To validate the framework’s efficacy, the researchers conducted experiments in a variety of settings, including conventional learning, federated learning via a single client, as well as federated learning via multiple clients. The study began by extracting features from various pre-trained models, ultimately selecting EfficientNetB3 with an impressive 99% accuracy as the baseline model. Subsequently, experimental results were conducted using the federated learning (FL) approach with both IID and non-IID datasets. The FL approach, along with a dense neural network trained and evaluated on an IID dataset, achieved outstanding training and evaluated accuracies of 99% with minimal losses of 0.006 and 0.03, respectively. Similarly, on a non-IID dataset, the FL approach maintained a high training accuracy of 99% with a loss of 0.04 and an evaluation accuracy of 95% with a loss of 0.08. These results indicate that the FL approach performs nearly as well as the base model, EfficientNetB3, highlighting its effectiveness in handling both IID and non-IID data. It was found that federated deep learning models with multiple clients outperformed conventional pre-trained models. The unique characteristics of the proposed framework, such as its data privacy for edge devices with limited resources, set it apart from the existing classification schemes for rice leaf diseases. The framework is the best alternative solution for the early classification of rice leaf disease because of these additional features.
  • Loading...
    Thumbnail Image
    Item
    Lightweight Federated Learning for Rice Leaf Disease Classification Using Non Independent and Identically Distributed Images
    (2023-08) Aggarwal, M; Khullar, V; Goyal, N
    Rice (Oryza sativa L.) is a vital food source all over the world, contributing 15% of the protein and 21% of the energy intake per person in Asia, where most rice is produced and consumed. However, bacterial, fungal, and other microbial diseases that have a negative effect on the health of plants and crop yield are a major problem for rice farmers. It is challenging to diagnose these diseases manually, especially in areas with a shortage of crop protection experts. Automating disease identifi cation and providing readily available decision-support tools are essential for enabling effective rice leaf protection measures and minimising rice crop losses. Although there are numerous classification systems for the diagnosis of rice leaf disease, no reliable, secure method has been identified that meets these needs. This paper proposes a lightweight federated deep learning architecture while maintaining data privacy constraints for rice leaf disease classification. The distributed client–server design of this framework protects the data privacy of all clients, and by using independent and identically distributed (IID) and non-IID data, the validity of the federated deep learning models was examined. To validate the framework’s efficacy, the researchers conducted experiments in a variety of settings, including conventional learning, federated learning via a single client, as well as federated learning via multiple clients. The study began by extracting features from various pre-trained models, ultimately selecting EfficientNetB3 with an impressive 99% accuracy as the baseline model. Subsequently, experimental results were conducted using the federated learning (FL) approach with both IID and non-IID datasets. The FL approach, along with a dense neural network trained and evaluated on an IID dataset, achieved outstanding training and evaluated accuracies of 99% with minimal losses of 0.006 and 0.03, respectively. Similarly, on a non-IID dataset, the FL approach maintained a high training accuracy of 99% with a loss of 0.04 and an evaluation accuracy of 95% with a loss of 0.08. These results indicate that the FL approach performs nearly as well as the base model, EfficientNetB3, highlighting its effectiveness in handling both IID and non-IID data. It was found that federated deep learning models with multiple clients outperformed conventional pre-trained models. The unique characteristics of the proposed framework, such as its data privacy for edge devices with limited resources, set it apart from the existing classification schemes for rice leaf diseases. The framework is the best alternative solution for the early classification of rice leaf disease because of these additional features.
  • Loading...
    Thumbnail Image
    Item
    Pre-Trained Deep Neural Network-Based Features Selection Supported Machine Learning for Rice Leaf Disease Classification
    (2023-04) Aggarwal, M; Khullar, V; Goyal, N; Singh, A; Tolba, A; Thompson, EB; Kumar, S
    Rice is a staple food for roughly half of the world’s population. Some farmers prefer rice cultivation to other crops because rice can thrive in a wide range of environments. Several studies have found that about 70% of India’s population relies on agriculture in some way and that agribusiness accounts for about 17% of India’s GDP. In India, rice is one of the most important crops, but it is vulnerable to a number of diseases throughout the growing process. Farmers’ manual identification of these diseases is highly inaccurate due to their lack of medical expertise. Recent advances in deep learning models show that automatic image recognition systems can be extremely useful in such situations. In this paper, we propose a suitable and effective system for predicting diseases in rice leaves using a number of different deep learning techniques. Images of rice leaf diseases were gathered and processed to fulfil the algorithmic requirements. Initially, features were extracted by using 32 pre-trained models, and then we classified the images of rice leaf diseases such as bacterial blight, blast, and brown spot with numerous machine learning and ensemble learning classifiers and compared the results. The proposed procedure works better than other methods that are currently used. It achieves 90–91% identification accuracy and other performance parameters such as precision, Recall Rate, F1-score, Matthews Coefficient, and Kappa Statistics on a normal data set. Even after the segmentation process, the value reaches 93–94% for model EfficientNetV2B3 with ET and HGB classifiers. The proposed model efficiently recognises rice leaf diseases with an accuracy of 94%. The experimental results show that the proposed procedure is valid and effective for identifying rice diseases.
  • Loading...
    Thumbnail Image
    Item
    Pre-Trained Deep Neural Network-Based Features Selection Supported Machine Learning for Rice Leaf Disease Classification
    (2023-04) Aggarwal, M; Khullar, V; Goyal, N
    Rice is a staple food for roughly half of the world’s population. Some farmers prefer rice cultivation to other crops because rice can thrive in a wide range of environments. Several studies have found that about 70% of India’s population relies on agriculture in some way and that agribusiness accounts for about 17% of India’s GDP. In India, rice is one of the most important crops, but it is vulnerable to a number of diseases throughout the growing process. Farmers’ manual identification of these diseases is highly inaccurate due to their lack of medical expertise. Recent advances in deep learning models show that automatic image recognition systems can be extremely useful in such situations. In this paper, we propose a suitable and effective system for predicting diseases in rice leaves using a number of different deep learning techniques. Images of rice leaf diseases were gathered and processed to fulfil the algorithmic requirements. Initially, features were extracted by using 32 pre-trained models, and then we classified the images of rice leaf diseases such as bacterial blight, blast, and brown spot with numerous machine learning and ensemble learning classifiers and compared the results. The proposed procedure works better than other methods that are currently used. It achieves 90–91% identification accuracy and other performance parameters such as precision, Recall Rate, F1-score, Matthews Coefficient, and Kappa Statistics on a normal data set. Even after the segmentation process, the value reaches 93–94% for model EfficientNetV2B3 with ET and HGB classifiers. The proposed model efficiently recognises rice leaf diseases with an accuracy of 94%. The experimental results show that the proposed procedure is valid and effective for identifying rice diseases.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback