Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Afify, Ahmed Z."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Modeling engineering data using extended power-Lindley distribution: Properties and estimation methods
    (Journal of King Saud University - Science, 2021) Al-Babtain, Abdulhakim A.; Kumar, Devendra; Gemeay, Ahmed M.; Dey, Sanku; Afify, Ahmed Z.
    In this paper, we introduce a new flexible distribution called the Weibull Marshall-Olkin power-Lindley (WMOPL) distribution to extend and increase the flexibility of the power-Lindley distribution to model engineering related data. The WMOPL has the ability to model lifetime data with decreasing, increasing, J-shaped, reversed-J shaped, unimodal, bathtub, and modified bathtub shaped hazard rates. Various properties of the WMOPL distribution are derived. Seven frequentist estimation methods are considered to estimate the WMOPL parameters. To evaluate the performance of the proposed methods and provide a guideline for engineers and practitioners to choose the best estimation method, a detailed simulation study is carried out. The performance of the estimators have been ranked based on partial and overall ranks. The performance and flexibility of the introduced distribution are studied using one real data set from the field of engineering. The data show that the WMOPL model performs better than some well-known extensions of the power-Lindley and Lindley distributions.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback